91 research outputs found

    Media coverage and public understanding of sentencing policy in relation to crimes against children

    Get PDF
    This research examines how the media report on sentences given to those who commit serious crimes against children and how this impacts on public knowledge and attitudes. Three months of press and television coverage were analysed in order to establish the editorial lines that are taken in different sections of the media and how they are promoted by selective reporting of sentencing. Results indicate that a small number of very high profile crimes account for a significant proportion of reporting in this area and often, particularly in the tabloid press, important information regarding sentencing rationale is sidelined in favour of moral condemnation and criticism of the judiciary. Polling data indicate that public attitudes are highly critical of sentencing but also confused about the meaning of tariffs. The article concludes by discussing what can be done to promote a more informed public debate over penal policy in this area

    Detection and characterization of subvisible aggregates of monoclonal lgG in serum

    Get PDF
    To detect and characterize the aggregation of therapeutic monoclonal antibodies in undiluted biological fluids. Fluorescently labeled subvisible IgG aggregates formed by applying either heat stress or by pH-shift were investigated immediately after addition to human serum, and after 24 h. Unstressed and stressed IgG formulations were analyzed by fluorescence single particle tracking, confocal laser scanning microscopy and flow cytometry. Unstressed formulations remained free from subvisible aggregates in serum, whereas heat-stressed and pH-shift stressed formulations showed dissimilar aggregation behaviors. The aggregation profile of the heat-stressed formulation diluted in serum remained practically the same as the one diluted in buffer, even after the 24 h incubation period. The pH-shift stressed formulation had strikingly smaller and more numerous subvisible aggregates immediately after dilution in serum compared to buffer. These aggregates became noticeably larger in both diluents after 24 h, but in serum they appeared to be formed by other types of constituents than the labeled protein itself. These results show that subvisible therapeutic protein aggregates may undergo changes in number, type and size distribution upon contact with human serum. This emphasizes the importance of analytical strategies for monitoring aggregation in undiluted biological fluids

    On the analysis of sedimentation velocity in the study of protein complexes

    Get PDF
    Sedimentation velocity analytical ultracentrifugation has experienced a significant transformation, precipitated by the possibility of efficiently fitting Lamm equation solutions to the experimental data. The precision of this approach depends on the ability to account for the imperfections of the experiment, both regarding the sample and the instrument. In the present work, we explore in more detail the relationship between the sedimentation process, its detection, and the model used in the mathematical data analysis. We focus on configurations that produce steep and fast-moving sedimentation boundaries, such as frequently encountered when studying large multi-protein complexes. First, as a computational tool facilitating the analysis of heterogeneous samples, we introduce the strategy of partial boundary modeling. It can simplify the modeling by restricting the direct boundary analysis to species with sedimentation coefficients in a predefined range. Next, we examine factors related to the experimental detection, including the magnitude of optical aberrations generated by out-of-focus solution columns at high protein concentrations, the relationship between the experimentally recorded signature of the meniscus and the meniscus parameter in the data analysis, and the consequences of the limited radial and temporal resolution of the absorbance optical scanning system. Surprisingly, we find that large errors can be caused by the finite scanning speed of the commercial absorbance optics, exceeding the statistical errors in the measured sedimentation coefficients by more than an order of magnitude. We describe how these effects can be computationally accounted for in SEDFIT and SEDPHAT

    Fluorescence Single Particle Tracking for the Characterization of Submicron Protein Aggregates in Biological Fluids and Complex Formulations

    Get PDF
    To evaluate the potential of fluorescence single particle tracking (fSPT) for the characterization of submicron protein aggregates in human serum, plasma and formulations containing human serum albumin (HSA). A monoclonal IgG was covalently labeled with a fluorescent dye and cross-linked with glutaraldehyde. IgG aggregates and fluorescent beads of 0.1 mu m (control) were diluted in buffer, serum and plasma, and their size distributions were analyzed by fSPT and nanoparticle tracking analysis (NTA). In a separate experiment, IgG and HSA, fluorescently labeled with different dyes, were mixed and subjected to heat stress. The stressed sample was analyzed by fSPT using a dual color mode and by NTA. The accuracy and precision of fSPT proved to be comparable to NTA. fSPT was able to successfully measure all the samples in buffer, serum and plasma. The average size of the cross-linked protein aggregates showed a slight increase in biological fluids. Moreover, fSPT analysis showed that a significant proportion of the aggregates formed by subjecting an IgG/HSA mixture to heat stress were composed of both proteins. fSPT is a powerful technique for the characterization of submicron protein aggregates in biological fluids and complex formulations

    Quality of Original and Biosimilar Epoetin Products

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Purpose To compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency. Methods Two original products, Eprex (epoetin alfa) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alfa) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency. Results Tested EPO products differed in content, isoform composition, and potency. Conclusion Of the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label

    Role of the PAS sensor domains in the Bacillus subtilis sporulation kinase KinA

    Get PDF
    Histidine kinases are sophisticated molecular sensors that are used by bacteria to detect and respond to a multitude of environmental signals. KinA is the major histidine kinase required for initiation of sporulation upon nutrient deprivation in Bacillus subtilis. KinA has a large N-terminal region (residues 1 to 382) that is uniquely composed of three tandem Per-ARNT-Sim (PAS) domains that have been proposed to constitute a sensor module. To further enhance our understanding of this "sensor" region, we defined the boundaries that give rise to the minimal autonomously folded PAS domains and analyzed their homo- and heteroassociation properties using analytical ultracentrifugation, nuclear magnetic resonance (NMR) spectroscopy, and multiangle laser light scattering. We show that PAS(A) self-associates very weakly, while PAS(C) is primarily a monomer. In contrast, PAS(B) forms a stable dimer (K-d [dissociation constant] o

    Molecular Dynamics Studies of the Nucleoprotein of Influenza A Virus: Role of the Protein Flexibility in RNA Binding

    Get PDF
    The influenza viruses contain a segmented, negative stranded RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP). X-ray structures have shown that NP contains well-structured domains juxtaposed with regions of missing electron densities corresponding to loops. In this study, we tested if these flexible loops gated or promoted RNA binding and RNA-induced oligomerization of NP. We first performed molecular dynamics simulations of wt NP monomer and trimer in comparison with the R361A protein mutated in the RNA binding groove, using the H1N1 NP as the initial structure. Calculation of the root-mean-square fluctuations highlighted the presence of two flexible loops in NP trimer: loop 1 (73–90), loop 2 (200–214). In NP, loops 1 and 2 formed a 10–15 Å-wide pinch giving access to the RNA binding groove. Loop 1 was stabilized by interactions with K113 of the adjacent β-sheet 1 (91–112) that interacted with the RNA grove (linker 360–373) via multiple hydrophobic contacts. In R361A, a salt bridge formed between E80 of loop 1 and R208 of loop 2 driven by hydrophobic contacts between L79 and W207, due to a decreased flexibility of loop 2 and loop 1 unfolding. Thus, RNA could not access its binding groove in R361A; accordingly, R361A had a much lower affinity for RNA than NP. Disruption of the E80-R208 interaction in the triple mutant R361A-E80A-E81A increased its RNA binding affinity and restored its oligomerization back to wt levels in contrast with impaired levels of R361A. Our data suggest that the flexibility of loops 1 and 2 is required for RNA sampling and binding which likely involve conformational change(s) of the nucleoprotein

    Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum) levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. METHODS: MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. RESULTS: Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115) compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158). ELISA diluent reagents that included bovine serum albumin (BSA) significantly reduced MIF serum detection (p < 0.01). MIF mRNA was localized to prostatic epithelium in all samples, but cancer showed statistically greater MIF expression. MIF and its receptor (CD74) were localized to prostatic epithelium. Increased secreted MIF was detected in culture medium from prostate cancer cell lines (LNCaP and PC-3). CONCLUSION: Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot) found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic adenocarcinoma compared to benign tissue from matched samples, supporting our earlier finding of increased MIF gene expression in prostate cancer
    corecore